
Analysis of Robust Trajectory Optimization with
Ellipsoidal Disturbances

Becky Abramowitz
University of Pennsylvania

Philadelphia, PA
rabram@seas.upenn.edu

Thomas Mulroy
University of Pennsylvania

Philadelphia, PA
mulroyt@seas.upenn.edu

Abstract—This document analyzes the DIRTREL approach to
robust trajectory optimization. DIRTREL (Direct Transcription
with Ellipsoidal Disturbances) was proposed by Zachary Manch-
ester and Scott Kuindersma at Harvard University in 2017 and
uses a direct transcription approach with an LQR controller and
an ellipsoidal model of disturbances. Specifically, this paper looks
at the robustness of the DIRTREL method, the time required
for algorithm computation, and the trackability of the resulting
controller. The paper also discusses the proceedings that led to
these findings, the effects of the direct transcription technique
on the DIRTREL output, and some suggestions for future work
in the domain.

I. INTRODUCTION

Classical trajectory optimization approaches rely on an
absolute understanding of system state as well as an accurate
depiction of the dynamics and environmental factors that
interact with the system. However, most real world systems
are inherently non-ideal; erroneous friction coefficients will
change system dynamics, unmodeled wiring can alter mass
distribution, and wind or air-flows can apply external forces.
These factors often cannot be explicitly predicted or accounted
for and make it nearly impossible for a real system to behave
exactly as planned. This discrepancy underpins the notion of
robust control - control systems must be designed to work in
cases beyond the ideal. These variations are often predictable
and can be approximated within some distribution.

The most common way to handle these discrepancies is
a stochastic representation of state, usually with disturbances
modeled as a Gaussian Distribution. These variations propa-
gate through time and are usually assumed to increase in a
Bayesian manner, such as in an Partially Observable Markov
Decision Process. Some previous work exists on the develop-
ment of trajectories for systems with this noise, but the space
is relatively new and far from over-saturated [3].

DIRTREL, a ”Robust Trajectory Optimization with Ellip-
soidal Disturbances and LQR Feedback” is a recent propo-
sition (2017) from Harvard University that suggests adding
disturbances, modeled as ellipsoids, to a direct transcription,
or DIRTRAN approach [6]. Direct transcription is a method
used in trajectory generation where the control input is defined
by a zero-order hold between steps. These steps, known
as knot points, also define the state function and must be
placed frequently throughout the desired trajectory. A graphic
illustrating the direct transcription approach is shown in Fig.

1. Direct transcription is often also accompanied by a first-

Fig. 1. Direct Transcription [4]

order Euler integration on the dynamics, which can leave some
artifacts on the system state [4].

The authors of the DIRTREL paper use ellipsoids to char-
acterize disturbances since they can be easily modeled in a
matrix and are synonymous with a bounded Gaussian distri-
bution. The DIRTREL model incorporates these ellipsoids into
its LQR-based cost function as well as its constraints over a
space of these deviations. These disturbances also propagate
over time and can be defined with respect to both magnitude
and initial condition. DIRTREL is defined by the nonlinear
optimization problem in (1) with a Robust Cost Function as
given in Algorithm I. The Robust Cost Function is a take
on a shooting method, and traverses the set of knot points
four times, performing matrix algebra at each step. The first
pass computes the gradients of the fh function defined in (1),
the second pass computes the P matrices for use in the third
pass which computes the closed-form solution K to the time-
varying LQR problem. The fourth pass updates the model of
the ellipsoidal disturbances and determines the effect that these
disturbances have on the objective cost. The DIRTREL method
thus propagates and incorporates the disturbances in a time-
varying manner and is a reasonable candidate for computing
robust trajectories that account for unmodeled deviations in



state.

minimize
x1:N ,u1:N−1,h

lW (x1:N , u1:N−1) + gN (xN ) +

N−1∑
i=1

g(xi, ui)

subject to
xi+1 = fh(xi, ui) = xi + f(xi, ui)h ∀i = 1 : N − 1

xi ∈ X ∀i = 1 : N

ui ∈ U ∀i = 1 : N − 1

uWi = ui ± col((KiEiK
T
i )

1/2) ∈ U ∀i = 1 : N − 1

xWi = xi ± col(E1/2
i ) ∈ X ∀i = 1 : N

hmin ≤ h ≤ hmax

(1)

Algorithm 1 DIRTREL ROBUST COST FUNCTION
Input: x1:N (state at all N knot points), u1:N−1 (control

at first N-1 knot points), D (magnitude of disturbances
squared), E1 (initial disturbance ellipsoids), Ql (state cost
for use in function), Rl (control cost for use in function),
Ql

N (cost-to-go for final state in function), Q (state cost),
R (control cost)

Output: lw (robust cost value)
Compute Partials

1: for i = 1...N − 1 do
2: Ai ← ∂x=xi

fh(x, u, w)
3: Bi ← ∂u=uifh(x, u, w)
4: Gi ← ∂w=0fh(x, u, w)
5: end for

Perform TVLQR Update
6: for i = N...1 do
7: Pi−1 = Q+AT

i PiAi−
AT

i PiBi(R+BT
i PiBi)

−1(BT
i PiAi)

8: end for
9: for i=1...N − 1 do

10: Ki = (R+BT
i Pi+1Bi)

−1(BT
i Pi+1Ai)

11: end for
Propagate Disturbances

12: H − 1← 0
13: for i=1...N do
14: l← l + Tr((Ql +KT

i R
lKi)Ei)

15: Ei+1 ← (A− I −BiKi)Ei(Ai −BiKi)
T

+(Ai −BiKi)HiG
T
i

+GiH
T
i (Ai −BiKi)

T +GiDG
T
i

16: Hi+1 = (Ai −BiKi)Hi +GiD
17: end for
18: l← l + Tr(Ql

NEN )
19: return l

This paper expands on the work done by Zachary Manch-
ester and Scott Kuindersma in the DIRTREL paper by re-
producing results on the cart-pole and pendulum systems as
well as including analysis on the algorithm’s robustness, speed,
and trackability. These analyses are performed by assessing
the outputs from DIRTREL on both of the aforementioned

systems compared to the outputs from systems with Gaussian
noise, a quantified assessment of system run times for both
configurations, and a discussion of optimizing and tracking
direct transcription based approaches. The work done in this
paper was performed in MATLAB using the SNOPT non-
linear optimization tool.

II. SYSTEM OVERVIEW

This paper utilizes two dynamical models: a pendulum
with unmodeled disturbance in mass, and a cart-pole with
unmodeled friction. The dynamics of each of these systems
are as follows.

A. Pendulum

The pendulum model used in this simulation is treated as
a point mass tethered to a rotating joint; the mass of the
pendulum is unknown. As shown in Fig. 2, the system has
one degree of freedom in rotation around the joint (θ) and
one control input torque (τ ) on this joint. The pendulum is

Fig. 2. Pendulum Model Parameters

governed by (2) where w is the disturbance to the mass.

(m+ w)L2θ̈ + (m+ w)gLsin(θ) = τ (2)

The state of the system is defined to be x = [θ, θ̇]′ and the
control defined as u = τ . The derivative of the state, ẋ, is
defined by (3).

θ̇ = θ̇

θ̈ = − g
L
sin(θ) +

u

mL2

(3)

Unless otherwise noted, Q = Ql =

[
10 0
0 1

]
, Ql

N =[
10 0
0 10

]
, R = Rl = 0.1, m = 1, L = 1, E1 is zeros,

a disturbed system has a value of D = 0.01 corresponding
to variation of ±0.1, and all units are SI. The state starts at
θ = 0, θ̇ = 0 and ends at θ = π, θ̇ = 0.

B. Cart Pole

The cart pole model used in this simulation is said to have an
unknown friction value, a reasonable assumption since friction
coefficients can be hard to model and a range can encompass
both static and dynamic friction values. As shown in Fig. 3,
the cart is said to have a mass of mc, and a point mass at
the end of the pole is said to have a mass of mp. The cart is



Fig. 3. Cart Pole Model Parameters

governed by (4) where w is the friction value. These equations
were derived with reference to [1].

S = sign(ẏ[(mp +mc)g +mp(Lθ̈sinθ + Lθ̇2cosθ)])

w = Sµc[(mp +mc)g +mp(Lθ̈sinθ + Lθ̇2cosθ)]

τ − w −mpL(θ̈cosθ − θ̇2sinθ) = (mc +mp)ÿ

−gsinθ = Lθ̈ + cosθÿ

(4)

The state of the system is defined to be x = [θ, θ̇, y, ẏ]′ and
the control defined as u = F applied to the cart as shown in
Fig. 3. The derivative of the state, ẋ is defined by (5).

θ̇ = θ̇

θ̈ = − (mp +mc)gsinθ + cosθ(F − w +mpLθ̇
2sinθ)

L(mp +mc)−mpLcos2θ

ẏ = ẏ

ÿ =
F − w −mpL(θ̈cosθ − θ̇2sinθ)

mp +mc

(5)

The state of the system is defined to be x = [θ, θ̇, y, ẏ]′ and
the control defined as u = τ applied to the cart. Unless

otherwise noted, Q = Ql =


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 , Ql
N =


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100

, R = Rl = 1, m = 1, L = 1, E1 is

zeros, a system with friction has D = 1 corresponding with
f = ±1 and all units are SI. The state starts at θ = 0, θ̇ = 0,
y = 0, ẏ = 0 and ends at θ = π, θ̇ = 0, ẏ = 0.

III. ROBUSTNESS ANALYSIS

In order to test the robustness of this algorithm, Gaussian
noise is introduced into the system. The general approach
taken is to run the trajectory optimization with the disturbance
parametrization matrix D. Then, the outputs of the state and
the control inputs are used as the desired trajectory xd and
ud to run in a closed loop LQR controller (as discussed
later). The real, continuous dynamics are used (as opposed
to the discrete time, linearized dynamics that are called for in

direct transcription in DIRTREL) and are simulated forward
in time with ode45 in MATLAB (Note that ode45 is still
a numerical solution method. However, it uses a 4th order
Runge-Kutta variable time-step method and is therefore a very
good approximation for the continuous solution). Noise is also
introduced into the simulated dynamics to test the robustness
and usefulness of the DIRTREL output. The method by which
noise is introduced varies depending on the physical interpre-
tation of the ellipsoidal disturbances introduced in DIRTREL.

A. Pendulum with disturbances in mass

In the case of the pendulum, the noise matrix D is intro-
duced with the physical interpretation of being a unknown
pendulum mass. Therefore to test the robustness of the pen-
dulum swing up trajectory, we sampled the mass from a
normal distribution centered on the nominal mass used in the
trajectory optimization and a standard deviation of σ = 0.3
as D represents variations with a hard bound of ±0.1. We
then ran the continuous time simulation with the LQR tracking
controller with a second LQR controller that stabilizes around
the upright position of θ = π. The cost matrices for the
LQR tracking controller and for the LQR stabilizing controller,
denoted Q and R respectively, are as follows.

Q =

[
10 0
0 10

]
R = 0.01

We ran this simulation in a loop with a different mass each
time. The results of this were optimistic in that we had very
few failures. Specifically, we ran this 20 times with different
masses. There was one failure to reach the upright (as defined
by the final position being greater than 0.1 radians from
π). The average deviation from the upright was 0.0129. The
average max control input for any given sequence was 3730
Nm. Clearly, the control inputs went significantly out of the
bounds originally set in DIRTREL. If we were to set a limit
on control authority, the success rate would no doubt be much
lower considering the amount of control authority used simply
to track the nominal trajectory without any deviation from the
nominal mass. It seems that the LQR controller compensates
for a bad nominal trajectory by significantly increasing the
control authority. This happens even when the mass is set
to the nominal mass. This can be seen in the plots of the
outputs of DIRTREL in Fig. 4, the outputs of an LQR tracking
controller with the nominal mass in Fig. 5 and the outputs of
the LQR tracking controller with a mass of mnominal+0.57 in
Fig. 6. Unfortunately, we did not have time to fully implement
a direct collocation pendulum swing up model and run it with
a mass perturbed by some amount to compare these results
to. However we did experiment with some simulations using
direct collocation with code modified from homework 5 where
the max control asserted for a pendulum with the nominal
mass is about 6Nm. This drastic difference demonstrates the
shortcomings of the open loop trajectory from DIRTREL. It
is also very interesting to note that with the nominal mass this
direct collocation implementation of swing up is possible with



Fig. 4. Robust Pendulum Tracking

Fig. 5. LQR tracking with nominal mass

just open loop control, while the DIRTREL needed a closed
loop LQR tracked to reach the top.

IV. SPEED ANALYSIS

The largest challenge encountered in this project is that the
optimization problem, as currently implemented in MATLAB
using SNOPT, takes nontrivial time. The DIRTREL paper
states that DIRTREL algorithm performs two to four times
slower than a direct transcription approach without ellipsoidal
disturbances. [6]. Table I shows the results from this paper (as
averaged over two iterations). These results show DIRTREL
computation times on the order of two to four times those
of DIRTRAN for lower numbers of knot points and greater
latency with more knot points. Table I also conveys the

Fig. 6. LQR tracking with m = mnominal0.25

magnitude of the speed of the algorithm; DIRTREL runs on
the order of minutes with some cases at higher numbers of
knot points taking on the order of hours. It is worth noting

TABLE I
DIRTREL COMPUTATION TIME (SEC)

Model N DIRTRAN DIRTREL
Pendulum 40 7.0 23.7
Pendulum 50 16.4 66.9
Pendulum 60 25.2 506.8
Cart Pole 40 50.9 343.4
Cart Pole 50 87.3 369.2
Cart Pole 60 217.4 1157.1

that these results were found on a 64-bit computer with an
Intel i7 processor and a 4-core CPU at 3GHz. Times on other
compute systems will vary, so values are intended to show
magnitude and relative sizes.

The following section discusses the rationale behind this
latency by looking at how the time is being spent over varying
numbers of iterations and over varying numbers of knot points.
There is a following discussion on numerical differentiation in
attempting to speed up the solver.

A. Hypothesis and Intuition

From Table I and the previous discussion of DIRTRAN
versus DIRTREL run times, it is apparent that a significant
amount of computational time is incurred by the ellipsoidal
disturbances in the Robust Cost Function. As shown in Equa-
tion 1, the E and K matrices produced by the Robust Cost
Function also inform the values of xWi and uWi which are
computed in every SNOPT iteration to inform the constraints.
The writing of the cost function and the constraints occurs in
what SNOPT handles as a single function (userfun in SNOPT
documentation) which calls the Robust Cost Function above.
The userfun also handles the cost function, computation of
the dynamics constraints, and the gradients (discussed later).
Given that a nontrivial amount of time is spent calculating
ellipsoidal disturbances in the Robust Cost Function, it follows
that a significant percentage of SNOPT computation time is
spent in this userfun. This hypothesis is shown to be true
below. (It should be noted that the results below were found
with the MATLAB profiling tool, which increases run time
to around 130% of the actual value, but we assume that the
overhead is distributed evenly and thus normalizing by total
time mitigates these effects.)

B. Number of Iterations

To assess the time spent on the DIRTREL problem, it is
imperative to begin with a comparison on lower numbers
of iterations. Although these systems do not converge, they
offer more insight into the calls computed by the SNOPT
optimization program. Fig. 7 shows the relative time spent
on the cost function and related steps by our DIRTREL
implementation. From Fig. 7, it is evident that the majority
of computation time in the DIRTREL algorithm is spent
on userfun and computing the cost function lw. This adds



Fig. 7. DIRTREL Time Breakdown with Varying Iterations

latency that otherwise would not be present in a trajectory
optimization algorithm. It is also interesting to note that the
pendulum has similar time breakdowns from the first iteration
through convergence to an optimal solution, while the cart
pole system spends an increasing amount of time in the
SNOPT MEX function which provides the SNOPT bindings
to MATLAB. Due to the nature of the MEX file, it cannot
be further analyzed directly. However, increasing time in the
MEX function is directly correlated with an increasing number
of iterations, implying that the MEX function time is likely
spent in computation towards the optimization. Distributing
these times by the number of function calls, one can assess
the time used by each function call, as shown in Table II.

TABLE II
AVERAGE FUNCTION CALL COMPUTATION TIME (MS)

Model Userfun lw fh Cost
Pendulum 2.24 2.20 0.010 0.010
Cart Pole 3.12 3.08 0.010 0.011

It is evident from Table II that the time to compute the
dynamics constraints (fh) and the cost is the same between
function calls, but the time to compute lw increases signif-
icantly with the complexity of the system, and thus more
complex systems and more calls to the lw function will
decrease speed of the DIRTREL algorithm.

With this analysis, it is important to look at the number of
calls to each function in the DIRTREL algorithm. As would
be expected, experimental results showed that cost function
and the function generating dynamics constraints are called
an equal number of times, specifically N − 1 times the
number of calls to userfun. Likewise, the userfun is called
the same number of times as the Robust Cost Function, which
makes sense since the Robust Cost Function is called once

per iteration of userfun. More interesting is the relationship
between the number of iterations and the number of calls
to userfun which is shown in Fig. 8. The number of calls

Fig. 8. Calls to Userfun for Pendulum and Cart Pole

is dependent solely on the number of major iterations - not
the number of total iterations - and seems to scale linearly
with that variation. There is some overhead number of calls
with zero major iterations, which are likely derived from the
computation that leads to the first iteration as well as the
automatic calculation of the gradients.

C. Number of Knot Points

One of the nuances of direct transcription is that the system
requires more knot points to reach a desired state than other ap-
proaches. For example, given the cost and constraints defined
prior, the pendulum needs 13 knot points without ellipsoidal
disturbances and 39 knot points with ellipsoidal disturbances
to yield a solution. The runtime of the Robust Cost Function is
O(N) and that function is called at least N times per iteration,
meaning that the total runtime is polynomial in N. Therefore,
the time needed scales dramatically with an increase of knot
points. Though the experimental results, as shown in Fig. 9,
vary from this ideal as the optimization solver does not have a
linear relationship between number of iterations and problem
size when reaching convergence, the overall trend can be seen
with the data. It takes significantly longer to run both more
complex systems and systems with larger numbers of knot
points.

Fig. 9. DIRTREL Run Time with Knot Points



D. Numerical Differentiation

Implementing the gradients into the SNOPT infrastructure
is non-trivial, as the robust cost function and therefore a sig-
nificant number of the constraints are not easily differentiable.
Therefore, a cursory gradient implementation provided deriva-
tives only for the easily differentiable dynamics constraints.
These derivatives did not yield significant improvement in
runtime, likely since there are only (N − 1)nx dynamics
constraints (where nx is the dimension of state) compared
to 2n2x ellipsoidal constraints on state and 2n2u ellipsoidal
constraints on control (where nu is the dimension of control).
The dynamics constraints depend on at most nu + 2nx state
values while, due to the backwards and forwards passes in the
robust cost function, the other constraints could depend on all
possible states.

A more careful implementation differentiates the Robust
Cost Function and thus the resulting state and control con-
straints via a line-by-line numerical differentiation. However,
with even only a few derivatives, the optimizer to requires a
higher convergence threshold to converge to a viable trajectory.
It is notable that Manchester and Kuindersma [7] significantly
lowered the threshold to 10−3 from 10−6 [2] for convergence
in their implementation. While the results may be marginally
faster with this constraint, they are inherently less optimal.

It is possible that further optimization within MATLAB on
the cost function could further reduce the time, but cursory
experimentation on data structures (cell arrays versus 3D
arrays) yielded minimal results. Additional improvements on
the run time could be made, as proposed in the paper by
running the SNOPT calls in C++.

V. TRAJECTORY TRACKING ANALYSIS

The goal of DIRTREL is to produce a feasible trajectory,
and the original DIRTREL paper looked at this output directly
[6]. However, a feasible trajectory from an optimizer with
assumptions does not necessarily imply that the trajectory will
work in the real world. This section discusses two trackers:
an open loop tracker that follows the control output from
DIRTREL and a closed-loop LQR tracker that interpolates
state and control values gathered from DIRTREL along with
the system’s deviations thereof to apply control.

A. Open Loop Tracker

Given that DIRTREL outputs both the states and control
inputs at each of the knot points, the first approach to applying
DIRTREL is an open loop controller. This system uses the
control outputs from DIRTREL to control a system with real
dynamics - in the case of the cart pole, this means including
the friction force. However, in both systems, the OL system is
unable to command the system to the desired result as shown
in Fig. 10 and 11. These results were consistent both with
and without disturbances added to the system - meaning that
a standard direct transcription approach without ellipsoidal
disturbances is also not able to be tracked with an open loop
controller.

Fig. 10. Pendulum with OL Tracker

Fig. 11. Cart Pole with OL Tracker

B. Closed Loop LQR Tracker

Since an OL system is unable to get the cart pole or the
pendulum to the desired state, a closed loop LQR tracker is
the next step. The tracker runs a closed loop LQR controller
on the error coordinate between the state of the system and
the desired state, as defined by a linear interpolation of the
DIRTREL output. The LQR solver is computed within an
ODE45 call in MATLAB. There is a secondary LQR controller
that handles the final phase of reaching the desired end state.
Unlike the OL tracker, this system is able to bring the system
to a desired state, as shown in Fig. 12. However, it is notable

Fig. 12. Pendulum with LQR Tracker

that the trackers do not exactly match the system dynamics and



require considerably more control input than the control input
designed for by the DIRTREL algorithm. While the control
input can be altered somewhat by varying the control cost
(R) in the LQR tracker, it is not possible to reach orders
of magnitude similar to the DIRTREL controller with this
tracker while also driving the pendulum to its final state. This
discrepancy implies that the path defined by DIRTREL is
not dynamically feasible - it should not require an order of
ten to a hundred times more control authority to reach the
state if the control path were feasible. It is also notable that
this variation is true for systems both with and without the
ellipsoidal disturbances, again implying that the issue lies with
the underlying direct transcription approach rather than the
ellipsoidal wrapper provided by DIRTREL.

VI. DISCUSSION

The following section highlights some higher level thoughts
on the project as well as opportunities to further research
moving forward.

A. Direct Transcription

Perhaps the biggest takeaway from this analysis are the
inherent problems with direct transcription - particularly the
first order integration method and the zero order hold on the
control inputs.

A zero order hold on control input is implicitly not phys-
ically realizable; for a real system, there is some smooth
transition between the various control states, and the control
input should thus be a continuous function. One ramification of
this is that the derivatives, as discussed in the Speed Analysis
section of this paper, should be continuous to ensure that they
are meaningful, else there are infinite derivatives at various
locations. It is probable that this discrepancy between a contin-
uous control function (specified by the finite control derivative
values) and the discontinuous control function (resulting from
direct transcription) yields an unrealistic model. This could be
the reason that a system modeled with gradients requires a
higher convergence threshold to get a result from the SNOPT
optimizer. These resulting errors are large and thereby reduce
the physical realizablility and tracking of the system. This
makes any direct transcription based approach far less useful
for applications on a real system.

Another ramification of direct transcription is the zero-order
hold on the control inputs requires more knot points than a
control schema such as direct collocation which varies the
control input linearly. The need for an increased number of
knot points is further exacerbated as the DIRTREL algorithm
uses the time step as a single decision variable that must be
the same for all steps. As there are a predefined number of
knot points, the time steps cannot be infinitely small, and a
more dramatic control input must be held for the entire time
step period. This constant step period with constant control
makes it harder for the system to converge to an optimal
solution thereby requiring extra computation time from the
optimization solver.

As mentioned in the prior section, tracking a direct tran-
scription based approach is inherently hard. This is because
the direct transcription based method, like other first order
Euler methods, is subject to O(h) error where h is the time
step value. For contrast, direct collocation is subject to O(h3)
error. Since h is less than 1, this cubic error is a significant
improvement. The error associated with direct transcription
causes general issues for trajectory tracking, especially with
underactuated systems [5].

The DIRTREL paper mentions that a midpoint integration
scheme can be used in lieu of the first order Euler integration
scheme mentioned in the paper. This was implemented by the
authors [7] and should provide higher accuracy and reduce run
times as it would eliminate some of the problems incurred with
the direct transcription approach.

B. Struggles

It would be an injustice to this paper to go without mention-
ing our many false starts and struggles. From the beginning,
we had trouble downloading SNOPT onto our computers and
were ultimately unable to get it working on a Mac. Once we
had SNOPT installed, we struggled on some initial tests to
figure out the SNOPT problem structure and how to define a
user function for input to the solver.

Our understanding of, and thus ability to quickly implement,
DIRTREL also had its share of problems. After our first few
reads, we did not understand that the Robust Cost Function si-
multaneously computes a trajectory, and we spent considerable
time trying to figure out how to pass a nominal trajectory into
DIRTREL. We also struggled to implement the time varying
LQR, initially trying to solve it with an ODE45 call as we
had done in a homework.

Once we had a working implementation of DIRTREL with
the pendulum, we got excited about complex dynamics and
spent some time working through the equations of motion for a
7-DoF bicycle system. However, the time required to compute
our ”intermediate” cart-pole system quickly extinguished this
idea.

The continuing time requirements for running the DIRTREL
algorithm on the cart pole system continued to be one of
our biggest struggles throughout. Given more time (mostly
computation time), we would have liked to further flesh out our
trackers and robustness analysis on the more complex system.

C. Future Work

Optimal robust trajectory generation is still a relatively new
field, and there are many improvements that can be made, both
to the DIRTREL algorithm and within the space as a whole.
Within DIRTREL, it could be potentially highly beneficial
to replace the direct transcription approach with direct col-
location, which would help with many of the problems listed
above. A higher order integration scheme could be similarly
useful.

Given that DIRTREL is designed to handle robustness, it is
not far fetched to add a LQG controller to the algorithm to
account for missing state feedback or unknowns in the control



input. This addition would further increase the robustness of
the system.

Given a system with more cores and higher processing
power, it would be interesting to run the DIRTREL algorithm
on a higher order system with more degrees of freedom and
control inputs and to assess the above criterium on such a
system.

Lastly, it would be interesting to see the effects of imple-
menting the algorithm in C++, as the paper briefly mentioned,
to see if it speeds up the optimization. This could also be
accomplished by creating MEX files that would run the slower
user function within MATLAB and see what the ramifications
on speed would be.

As more algorithms are capable of solving these robust
trajectory optimization problems, it would be interesting to
compare them with DIRTREL and be able to perform more
of a comparative assessment.

For reference, and to be a starting point for any fu-
ture work, our code is available at the following link:
https://github.com/rabramowitz/probabilistic traj opt.

ACKNOWLEDGMENT

We would like to thank the MEAM 517 course staff, Dr
Michael Posa and Matt Halm, for their continued help and
support on this project.

REFERENCES

[1] Razvan V. Florian. Correct equations for the dynamics of the cart-pole
system. 2005.

[2] Philip E. Gill, Walter Murray, and Michael A. Saunders. Users guide for
snopt version 7: Software for large-scale nonlinear programming.

[3] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artif.
Intell., 101(1-2):99–134, May 1998.

[4] Matthew P. Kelly. Transcription methods for trajectory optimization: a
beginners tutorial. arXiv:1707.00284 [math.OC], 2017.

[5] Scott Kuindersma. Lecture notes optimizing robot motions through
contact, July 2016.

[6] Zachary Manchester; Scott Kuindersma. Dirtrel: Robust trajectory opti-
mization with ellipsoidal disturbances and lqr feedback. 2017 Robotics:
Science and Systems (RSS), 2017.

[7] Zachary Manchester; Scott Kuindersma. Harvard agile robotics lab.
https://github.com/HarvardAgileRoboticsLab/drake/blob/dirtrel/drake/
matlab/solvers/trajectoryOptimization, 2017.

https://github.com/rabramowitz/probabilistic_traj_opt

	Introduction
	System Overview
	Pendulum
	Cart Pole

	Robustness Analysis
	Speed Analysis
	Hypothesis and Intuition
	Number of Iterations
	Number of Knot Points
	Numerical Differentiation

	Trajectory Tracking Analysis
	Open Loop Tracker
	Closed Loop LQR Tracker

	Discussion
	Direct Transcription
	Struggles
	Future Work

	References

