
Model Predictive Control for F1/10 Race Car

Team Emu Imu: Becky Abramowitz, Vaibhav Arcot, Hunter Lightman, Matt Oslin

Abstract— This paper explains our approach to a Model
Predictive Control based algorithm to compete in head to
head racing of F1/10 Autonomous Race Cars. The model relies
on adapted bicycle model dynamics and a convex workspace
formed by two receding lines from the car to constrain a
linear optimization function that minimizes the deviation from
predefined waypoints. The method described was successful in
racing and was able to operate at speeds of up to 4 m/s and
compete at 1.5 m/s in head-to-head race situations.

I. INTRODUCTION

The goal of the final project was to implement a race tech-
nique that would make our car capable of being successful
in a head-to-head race. Our team chose to implement Model
Predictive Control (MPC) to follow a series of pre-existing
waypoints given constraints on feasible dynamics and nearby
obstacles.

A. Background on Model Predictive Control

Model Predictive Control is an approach to a receding
horizon optimization problem that incorporates constraints
[4]. The optimization problem used in MPC is often of a
similar form to the Linear Quadratic Regulator (LQR), which
is defined by state dynamics and quadratic cost. However,
the benefit of LQR is that it has a closed form solution
in the Riccati equation, but this solution does not account
for system constraints. Therefore, an MPC problem must be
solved with an external optimization solver.

Although LQR itself cannot be used, it is reasonable to
structure an online MPC problem as having linear dynamics
and quadratic cost. The rationale for linear dynamics is two-
fold. Linear dynamics are significantly less computationally
expensive than non-linear dynamics, and can also be repre-
sented in a matrix equation Ax ≤ b where A is a constraint
matrix, x is the state vector, and b is a constraint vector.
Similarly, a quadratic cost means that the cost incurred
depends on the magnitude of values rather than their signs.
The cost function with a state vector x and control input
vector u usually takes the form

J = x>Qx+ u>Ru. (1)

where Q is the cost on state and R is the cost on control.
The Q and R matrices must be positive definite (or positive
semidefinite for some optimization solvers) and are usually
diagonal in form, with each value corresponding to the
cost weight applied to that element of state or control. A
optimization problem that looks to optimize a quadratic cost
would be of the form

min
x,u

x>Qx+ u>Ru. (2)

The function detailed above gives the cost for a single
state of the system, and we want to plan ahead and compute
a trajectory that optimizes progress towards an end goal.
For a discrete, infinite time problem, this would yield the
optimization problem

min
x,u

∞∑
i=0

x>i Qxi + u>i Rui. (3)

The subscript ”i” means that the value is taken for a specific
knot point i in time.

However, a system with no clear endpoint cannot be
computed infinitely far in advance, and even if it could, the
operation would be slow. Therefore, an MPC problem should
be dealt with in a receding horizon approach. The system
looks some N steps or T timespan ahead and computes the
cost function along steps in increments of dt. The state at
these times i are included in the state vector xi, and the
control input applied is ui. The cost from the last point is
included in a third matrix QN , called the cost to go which
incorporates the cost incurred by ending at the final state, as
shown in the optimization problem

min
x1:N ,u0:N−1

∞∑
i=0

x>i Qxt = i+ u>i Rui + x>NQNxN . (4)

This cost to go matrix is usually weighted higher than the
the Q matrix as it is imperative for keeping the system on
track. This was also found in our tuning, as discussed below.

B. Problem Definition

The first step in defining our MPC problem was to define
our system, particularly the constituents of the state vector x
and the control vector u, as well as the a model to represent
the system dynamics.

Inspired by a bicycle model, as shown in Fig. 1, the system
was defined with the state definition shown in (5).

xi =


xi
yi
θi
vi
φi

 (5)

In this definition, xi and yi are the coordinates of the car
(the LiDAR) in global space, θi is the heading of the car,
vi is the velocity of the car defined by the forwards linear
velocity of the driving rear wheels, and φi is the steer angle
of the front wheels.

Rather than driving the car with the velocity and steer
angle, as done in the Pure Pursuit assignment earlier in the



Fig. 1. Bicycle Model of Car

course, we followed a more traditional approach and used the
control vector shown in (6) which uses the linear acceleration
of the rear wheels and the rotational velocity of the front
wheels.

ui =

[
v̇i
φ̇i

]
(6)

We can combine the state and control vectors into a single
state vector X which contains the state of the car at the next
N projected knot points. This resulting vector is of the form
shown in (7).

X =



u0
x1
u1
...

xN−1
uN−1
xN


(7)

C. Dynamics Constraints

There are two challenges to determining the dynamics
constraints of the system: fitting a linear model and choosing
what to linearize about. Both will be discussed in this section.

1) Bicycle Dynamics: Using our bicycle model in Fig. 1,
our system dynamics are of the form shown in (8) where
l = 0.3m is the distance from the front to the rear wheel.

xi+1 = xi + dt · vi · cos(θi + φi)

yi+1 = yi + dt · vi · sin(θi + φi)

θi+1 = θi + dt · vi · sin(φi)/l

vi+1 = vi + dt · v̇i
φi+1 = φi + dt · φ̇i

(8)

We compared the predicted trajectory given this model and
a series of control inputs to the actual measured pose of the
car in Fig. 2. We were particularly pleased with the drift
rejection over two and a half minutes of driving.

2) Linear Model: To get a linear model from (8), we
chose to linearize around error coordinates with v∗i , θ

∗
i , φ
∗
i

as the desired states, meaning that errors in θ and φ would
be small and small angle approximations would be valid.
This led to the dynamical model shown in (9).

Fig. 2. Dynamic Model Verification

xi+1 = xi + dt · (vi · cos(φ∗i + θ∗i )−
θi · v∗i · sin(φ∗i + θ∗i ) + v∗i · sin(φ∗i + θ∗i )·
(φ∗i + θ∗i )− φi · v∗i · sin(φ∗i + θ∗i ))

yi+1 = yi + dt · (vi · sin(φ∗i + θ∗i )+

θi · v∗i · cos(φ∗i + θ∗i ))− v∗i · cos(φ∗i + θ∗i )·
(φ∗i + θ∗i ) + φi · v∗i · cos(φ∗i + θ∗i )

θi+1 = θi + (dt · (vi · sin(φ∗i )− φ∗i · v∗i · cos(φ∗i )+

φi · v∗i · cos(φ∗i )))/l

vi+1 = vi + dt · v̇i
φi+1 = φi + dt · φ̇i

(9)

However, these dynamics did not work well on the car, so we
instead linearize around the starting heading by introducing
coordinates θ̄i = θi− θ0, φ̄i = φi−φ0. Since our horizon is
relatively short, we can assume θ̄i ≈ 0, φ̄i ≈ 0. To make our
dynamics linear, we also assume vi ≈ v̄i, given by (10).

v̄i =

{
min(v̄i−1 + dt · v̇max, v

∗
i ) v̄i−1 ≤ v∗i

max(v̄i−1 − dt · v̇max, v
∗
i ) v̄i−1 > v∗i

v̄0 = v0

(10)

Now we can rewrite our system dynamics in the form (11).

xi+1 ≈ xi + dt · v̄i · cos(φ0 + θ0 + θ̄i + φ̄i)

= xi + dt · v̄i · (cos(θ0 + φ0) cos(θ̄i + φ̄i)−
sin(θ0 + φ0) sin(θ̄i + φ̄i))

yi+1 ≈ yi + dt · v̄i · sin(φ0 + θ0 + θ̄i + φ̄i)

= yi + dt · v̄i · (sin(θ0 + φ0) cos(θ̄i + φ̄i)+

cos(θ0 + φ0) sin(θ̄i + φ̄i))

θi+1 ≈ θi + dt · v̄i · sin(φ0 + φ̄i)/lr

= θi + dt · v̄i · (sin(φ0) cos(φ̄i)+

cos(φ0) sin(φ̄i))

(11)



If we apply small angle approximations we get the model
shown in (12).

xi+1 ≈ xi + dt · v̄i · (cos(θ0 + φ0)+

sin(θ0 + φ0) · (θ0 + φ0)−
sin(θ0 + φ0) · (θi + φi))

yi+1 ≈ yi + dt · v̄i · (sin(θ0 + φ0)−
cos(θ0 + φ0) · (θ0 + φ0)+

cos(θ0 + φ0) · (θi + φi))

θi+1 ≈ θi + dt · v̄i · (sin(φ0) + cos(φ0) · φ̄i)/l
vi+1 = vi + dt · v̇i
φi+1 = φi + dt · φ̇i

(12)

These new system dynamics are linear and can be expressed
in the form A(x0) ·X = b(x0).

D. State and Control Bounds

To prevent our optimizer from choosing infeasible control
inputs, we limited the linear acceleration and turning rate as
well as the the velocity and steer angle states, shown in (13).

−v̇max ≤ v̇i ≤ v̇max

−φ̇max ≤ φ̇i ≤ φ̇max

−vmax ≤ vi ≤ vmax

−φmax ≤ φi ≤ φmax

(13)

These constraints can be combined into the form A·X ≤ b.

E. Target Point Selection

To choose our desired state vector X∗, we assume our
desired control input is zero. To find our desired xi, yi, θi,
we select waypoints that our feasibly reachable by assuming
we accelerate to the desired maxVelocity along the given
waypoints. This is shown in Alg. 1.

F. Workspace Constraints

With a working set of dynamics constraints, we were able
to follow a predefined series of waypoints. However, this was
effectively another implementation of a blind pure pursuit; it
did not account for any of the LiDAR data or any obstacles
that may appear along the car’s path. It is thus important
to define workspace constraints, which are derived from the
LiDAR data and which enter the optimization solver along
with the dynamics constraints to limit the car’s path to a
physically feasible area.

Due to the nature of the optimization solver, the working
area needs to be defined by linear bounds so as to form
linear constraints, and since all constraints must be active,
the limited area must be defined to be convex. It is important
that this area is sufficiently large that the car can create a
path within it, but also be sufficiently small that the car does
not intersect any obstacles.

The first approach that we tried was to grow the kernel
found with [3] from the star-shaped polygon created by the
LiDAR data and use that to get an approximation of the
maximum sized convex shape as done in [1]. This is a faster
approach, with a runtime of O(n+ k log k), where n is the

Algorithm 1 GetTargetWaypoints
Input: Car, Waypoints
Output: Target Points

targetPoints = []
closestIdx ← None
closestDist ← inf
for waypoint in Waypoints do

if dist(waypoint, car) < closestDist then
closestIdx ← waypoint index
closestDist ← dist(waypoint, car)

end if
end for
travelledDist ← 0
vel ← car.v
targetDist ← 0
targetPoints[0] ← waypoints[closestIdx]
for i in 1 to N do

targetDist ← targetDist + vel × dt
vel ← min(vel + maxVDot × dt, maxVelocity)
while travelledDist < targetDist do

travelledDist += dist(waypoints[closestIdx], way-
points[closestIdx + 1] )
increment closestIdx

end while
targetPoints[i] ← waypoints[closestIdx]

end for
return targetPoints

total number of points in the scan and k is the number of
reflex points, compared to the standard O(n7) solution to
the ”Potato Peeling” Problem. However, this approach was
complex and the largest sized polygon would not always
yield the best constraints for a race situation. Therefore, we
decided to pick a simpler approach.

Our simplified approach in Alg. 2 resembled the gap
finding method that we solved earlier in the semester and
produces two linear constraints that define the workspace.
These constraints are found given a lookahead distance by
scanning the LiDAR data to find two consecutive points that
are the greatest lateral distance apart with one point being
on either side of the lookahead distance away longitudinally.
The search is started at a nominal lookahead distance, and
if no viable gaps are found the distance is shortened. This
method tends to find the widest gaps that are far enough
ahead to act on.

Hysteresis is introduced by taking the gap closest to the
previous best gap when more than one gap are ε similar in
size. The gap is also shrunk by δ laterally on each point to
ensure buffer between the car and the obstacle, and gaps are
transformed into the map frame.

Given the two points from the gap g = [xp1, yp1, xp2, yp2]
and the car’s current location, the next step was to convert
these to linear constraints. We modeled these two points and
the car as shown in Fig. 3. These constraints then followed
the linear equations shown in (14) in global space relative to



Fig. 3. Drivable Workspace Diagram

the map frame.

x(yc1 − yp1) + y(xp1 − xc1) ≤ yc1xp1 − yp1xc1
x(yp2 − yc2) + y(xc2 − xp2) ≤ yp2xc2 − yc2xp2

(14)

where c1, c2 are always a fixed distance r laterally to the
car. The constraints in (14) must be true for all xi and yi
values rolled forward in time in the MPC and can be written
in the form A(x0, g) ·X ≤ b(x0, g).

II. OUR MPC ALGORITHM

Our Model Predictive Control algorithm was designed
with the above definition of state and constraints. Our
methodology is shown in the high-level psuedo-code shown
in Alg. 4 and the MPC problem is solved in in Alg. 3.
It is useful to note that our optimization approach uses
the quadprog quadratic optimization solver (instructions
to download in Necessary Packages section below) which
solves the problem defined in (15) using the algorithm in
[2].

min
X

1

2
X>GX − a>X

subject to C>X ≥ b
(15)

where the first m columns of C are equality constraints. The
definition used in quadprog is syntactically different than
the minimization problem detailed above because it mini-
mizes in error coordinates, therefore X∗, which represents
the desired states from our waypoints, is included directly
into the formulation (16).

(X −X∗)>G(X −X∗)
X>GX − (X∗)>GX −X>GX∗ − (X∗)>GX∗

X>GX − 2(X∗)>GX − (X∗)>GX∗

X>GX − 2(X∗)>GX

X>GX − 2aX where a = (X∗)>G

(16)

Since the problem is a minimization, a scalar multiple of
2 and removing constants does not change the resulting
solution.

Asynchronously we are constantly maintaining the car’s
current state by listening to messages published by the vesc
and the particle filter.

Our MPC algorithm runs an optimization to minimize the
distance of the car from a series of pre-set waypoints. These

Algorithm 2 Find Gap
Input: Car (with current v, φ, x, y, θ, transformation from
laser to map frames), LaserScan (with longitudinal,
lateral distance x, y and heading theta for each point),
PrevGapHeading

Output: Gap
lookahead ← lookaheadStart
bestGaps = []
bestSize ← 0
while lookahead > 0 do

for consecutive points a,b in LaserScan do
if a.x < lookahead and b.x > lookahead then

if abs(a.y − b.y) > minGapSize then
bestGaps[end] ← (a,b)
if abs(a.y − b.y) > bestSize then

bestSize ← abs(a.y − b.y)
end if

end if
end if

end for
if bestSize > 0 then

bestGap ← None
closestDist ← inf
for gap in bestGaps do

dist ← abs(mean(gap.a.theta, gap.b.theta) − Pre-
vGapHeading)
if abs(gap.a.y − gap.b.y) > bestSize − epsilon and
dist < closestDist then

closestDist ← dist
bestGap ← gap

end if
end for
return bestGap

end if
lookahead ← lookahead − increment

end while

Algorithm 3 MPC Approach
Input: Car (with current v, φ, x, y, θ, transformation from
laser to map frames), Waypoints, G

Output: ResultPolicy
targetPoints ← GetTargetWaypoints(Car, Waypoints) [1]
Xdes ← targetPoints in state space
a ← calculated from G and Xdes (16)
A1, B1 ← from dynamics constraints (12)
A2, B2 ← from state and control bounds (13)
A3, B3 ← from workspace constraints (14)
C ← concatenation of A1, A2, A3
b ← concatenation of B1, B2, B3
solve with quadprog and return resultPolicy



Algorithm 4 MPC Loop
Input: CurrentControlPolicy

while true do
if mpc solver thread is finished then

currentControlPolicy ← resultPolicy
spawn a new mpc solver thread

else
apply next control from currentControlPolicy

end if
wait dt time

end while

waypoints are brought in from a CSV file which contains
the global x, y, and θ values for the car at these waypoints
along with an ”aggro scale” telling the car how quickly it
can relatively move at that locale. The target waypoints are
selected as shown in Alg 1. The algorithm first looks for
the closest waypoint to the current location of the car (lines
4-9 of Alg 1). It then rolls the dynamics forward to find the
distance that the car should be from its current location at
each of the lookahead knot points and finds the waypoint
one step back from that distance. A more comprehensive
implementation could interpolate between waypoints, but we
defined a smoothed and very dense waypoint path so as to
mitigate the effects of this assumption.

A. Parameters

There were several sets of parameters that needed to be
tuned for a working MPC algorithm, which are detailed in
sections below.

The first subset of parameters were car-specific and were
used in the car dynamics calculations. These came from
experimentation on the car and are defined in Table I.

TABLE I
CAR PARAMETERS

Param Value Meaning
vmax 5 Max Linear Velocity, Rear Wheels (m/s)
φmax 0.34 Max Angular Position, Steering (rad)
v̇max 100 Max Linear Acceleration, Rear Wheels (m/s2)

φ̇max 3.2 Max Angular Velocity, Steering (rad/s)

As with any optimization problem, the weight matrix G
also required tuning. The G matrix is diagonal of size n by
n where n is the size of the total state vector X and each
element indexed at (i, i) is the weight of that element in the
state vector. We kept the weight of each parameter the same
at all knot points spare the last, and therefore we only had
to tune one weight for each element of the state in addition
to the final cost-to-go values. The cost-to-go is included in
the final rows of the G matrix which weight the values of
xN . The resulting values for each of these weights, as well
as their meanings are defined in Table II.

There were some other, more system-level parameters that
were also tuned for the MPC approach. These are detailed
in Table III.

TABLE II
STATE PARAMETERS

Param Value Meaning
Wx 20 Weight of x error at knot point
Wy 20 Weight of y error at knot point
Wθ 50 Weight of θ error at knot point
Wv 2 Weight of v error at knot point
Wφ Weight of φ error at knot point
Wv̇ 0.01 Weight of v̇ at knot point
Wφ̇ 0.01 Weight of φ̇ at knot point
WxN 5 Weight of final x error
WyN 5 Weight of final y error
WθN 1000 Weight of final θ error
WvN 2 Weight of final v error
WφN

Weight of final φ error

TABLE III
STATE PARAMETERS

Param Value Meaning
dt 0.1 Timestep (s)
T 0.5 Number of seconds to look ahead (s)

maxVelocity 2 Desired max speed when going straight
aggroScale 1 Scale factor for turn slowdown
lookahead 2 Obstacle Look Ahead Distance (m)

All of the aforementioned parameters can be found and
set in the optimizer.py file.

B. Speed

We designed our algorithm with speed in mind by using a
simple quadratic solver and linearizing the dynamics so as to
minimize computation time. To our surprise, the optimization
solver ran faster than the code used to set the constraints.
The optimization solver itself was able to consistently run
in under 10 milliseconds, and the whole MPC stack runs at
around 20 Hz on the TX2 processor. Since our final time
step size was 100 milliseconds, this gave us a nice buffer as
our actual controls were applied with a 10 Hz frequency.

We did use multi-threading on the MPC solver to ensure
that the computations were done as quickly as possible.
This also let us avoid blocking the main MPC loop with
our solver—if a solve took especially long, we could keep
applying the old control policy until the solution was ready.
Additional improvements could be made by switching our
code from Python to C++ but our speed was sufficient
for the problem we were trying to solve. Additional gains
could have been achieved by offloading matrix computation
to the GPU, but since most of the heavy computation
occurred within numpy (for our calculations) or quadprog
(for the optimizer specific calculations), and because we were
achieving sufficient speeds, it did not seem necessary to add
in the extra complexity of finding/writing GPU accelerated
code.

C. Necessary Packages

We used the quadprog optimization package for Python.
The package can be downloaded with the command pip
install quadprog and further information on this pack-
age can be found at https://pypi.org/project/quadprog/.



Fig. 4. MPC Problem Verification

D. Testing

Due to the unrealistic nature of our Gazebo environment
(which often has the car doing somersaults and other infeasi-
ble 3D maneuvers), most of the testing on the car was done
in the real world. The testing was done in various levels
in order to ensure that the foundations were working well
before adding a new layer and are detailed in the following
paragraphs.

1) Matlab Verification: To esnure we had properly defined
our optimization problem, we implemented our nonlinear
system dynamics and MPC solution in Matlab. Various
waypoints were tested, shown in Fig. 4, including going
around a turn, handling an initial heading error, and avoiding
a linear constraint. The desired trajectory is outlined with
black arrows, the MPC planned trajectories are plotted in
rainbow with once color for each control policy, and the
actual trajectory is marked with black dots.

2) Localization: The first tests were performed on the
car’s localization within the track. This proved at times
problematic, since the walls of the track did not provide
absolute barriers to the LiDAR and the scans sometimes
returned values outside of the track walls. This phase of
testing involved running Google Cartographer and manually
editing the resulting map in Adobe Photoshop to get a map
that meshed well with the surroundings. We also developed
some intuition on the locations in which the car loses its
localization which was useful in debugging future cases.

3) Optimization Approach: Once we had developed the
MPC algorithm, we ran tests without the regional constraints.
This was useful for tuning the cost matrix for the car to best
follow the desired waypoints. Perhaps our biggest realization
in this phase was the need to put a large weight on the final
heading of the car; otherwise the weight on control authority
needed for the car to turn kept the car straight and too little
weight on control left the car fishtailing. These tests were
done on the racetrack, looking at our visualization in RVIZ.

4) Regional Constraints: The final set of testing was
performed with obstacles in the car’s workspace and the re-
gional constraints added to the MPC solver. These obstacles

were originally static boxes, and as we further tuned our
system, we were able to make the obstacles quasi-dynamic
by moving the boxes around and walking in line with the
car.

5) Speed: We also tested the car (albeit briefly) for speed
by running quickly around the racetrack and determining
what aggro scale values were necessary for the car to drive
(sans obstacles) at varying velocities.

III. RACEDAY RESULTS

On race day, our car successfully navigated the track
autonomously using the MPC algorithm, both with and
without obstacles. Without obstacles, we were able to run
the car at a max speed of 4 m/s on the straight-aways for
lap times a little over 6 seconds. The car was certified for
head to head racing and competed against the Ninja Turtles
in both autonomous and manual driving modes.

A feature of the MPC algorithm approach that we used
is that our car hesitates when it does not immediately see a
gap. From a computational standpoint, this situation occurs
when the optimization problem is unable to be solved as the
workspace of the car – as defined by the regional constraints
– is too small. Although this would likely be a good feature
from a safety standpoint, it makes our car slower in a race-
track situation.

REFERENCES

[1] D Coeurjolly and J-M Chassery. Fast approximation of the maximum
area convex subset for star-shaped polygons, 2004.

[2] D Goldfarb and A Idnani. A numerically stable dual method for solving
strictly convex quadratic programs. Mathematical Programming, 27:1–
33, Sept. 1983.

[3] D Lee and F Preparata. An optimal algorithm for finding the kernel of
a polygon. Journal of the ACM (JACM), 26:415–421, July 1979.

[4] D Mayne, J Rawlings, C Rao, and P Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789 –
814, 2000.


	INTRODUCTION
	Background on Model Predictive Control
	Problem Definition
	Dynamics Constraints
	Bicycle Dynamics
	Linear Model

	State and Control Bounds
	Target Point Selection
	Workspace Constraints

	Our MPC Algorithm
	Parameters
	Speed
	Necessary Packages
	Testing
	Matlab Verification
	Localization
	Optimization Approach
	Regional Constraints
	Speed


	Raceday Results
	References

